IDENTIFYING DATA 2015_16
Subject (*) ENVIRONMENTAL TECHNOLOGIES Code 17204228
Study programme
Bachelor's Degree in Electronic and Automation Engineering (2010)
Cycle 1st
Descriptors Credits Type Year Period
3 Optional 2Q
Language
Català
Department Eng. Electrònica, Elèctrica i Automàtica
Enginyeria Química
Coordinator
CONTRERAS IGLESIAS, SANDRA
E-mail sandra.contreras@urv.cat
Lecturers
CONTRERAS IGLESIAS, SANDRA
Web http://https://moodle.urv.cat/
General description and relevant information L’objectiu principal de l’assignatura és adquirir una visió global de l’enginyeria ambiental: conèixer la problemàtica de la contaminació d’aire i aigües, quines són les tecnologies més comunes per al tractament i eliminació de contaminants o com es gestionen els residus. Es tractarà també el concepte de sostenibilitat ambiental, els indicadors per mesurar-la, i com aplicar-la als processos productius: com avaluar ambientalment una activitat i quines eines d’anàlisi cal incorporar al procés per tal d’evitar els tractaments de final de línia.

Competences
Type A Code Competences Specific
 RI10 Have basic and applied knowledge of environmental and sustainability technology.
Type B Code Competences Transversal
 B5 Be able to analyse and evaluate the social and environmental impact of technical solutions.
Type C Code Competences Nuclear

Learning outcomes
Type A Code Learning outcomes
 RI10 Know the concept of sustainability and sustainable development.
Know the tools and methods to apply the concept of sustainability to production processes, such as eco-design and cleaner production.
Know how to identify the principal problems of water and air pollution and solid waste.
Know the main systems for wastewater treatment and how to apply them.
Know the main systems for dealing with gases and how to apply them.
Know the effects of noise and how to minimise it.
Know the principal sources of light and radiation pollution and how to manage them.
Know how to manage municipal and industrial waste.
Identify the principal sources of sustainable energy.
Understand and apply critical reasoning to environmental problems and propose solutions.
Type B Code Learning outcomes
 B5 Know the tools and methods to apply the concept of sustainability to production processes, such as eco-design and cleaner production.
Apply the methodology to perform a life-cycle analysis of a product.
Know the methodology for performing an environmental impact study.
Know the advantages of applying an environmental management system and the principal regulations.
Type C Code Learning outcomes

Contents
Topic Sub-topic
I. SUSTAINABILITY - Causes and origin of unsustainability
- Sustainability paradigm. Concept of sustainable development.
- Measurement of sustainability. Indicators.
- Fundamentals of Ecology: industrial ecology

II: SUSTAINABILITY AND PRODUCTION PROCESSES
- Corporate Social Responsibility
- Green Chemistry
- Ecodesign
- Life Cycle Assessment
- Environmental Management Systems (ISO 14001 and EMAS)
- Environmental Impact Assessment
- Cleaner production: Concept of BAT. Pollution prevention.
III. ENVIRONMENTAL TECHNOLOGIES
III.1. Characterization of the atmospheric environment - The atmosphere
- Air pollution and air quality
- Gas treatment systems: particle removal and removal of gaseous pollutants
- Noise pollution: effects of noise, noise management
- Light pollution and radiation pollution
- BAT Technologies.
III.2. Characterization of aqueous environment - Water as a resource
- Indicators of water quality
- Water treatment: primary, secondary, and tertiary treatments.
- Sludge treatment.
- BAT Technologies.
III.3. Wastes - Definition and classification of wastes
- Waste management: separate collection, recycling, waste recovery
- Industrial waste management

Planning
Methodologies  ::  Tests
  Competences (*) Class hours
Hours outside the classroom
(**) Total hours
Introductory activities
0.5 0 0.5
Lecture
RI10
B5
20 31.7 51.7
Personal tuition
0.5 0 0.5
 
Practical tests
RI10
B5
5 8 13
Objective short-answer tests
RI10
B5
2 2.7 4.7
Objective short-answer tests
RI10
B5
2 2.6 4.6
 
(*) On e-learning, hours of virtual attendance of the teacher.
(**) The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies
  Description
Introductory activities Activities to make contact and gather information from students, and presentation of the subject.
Lecture Exposition of contents of the subject
Personal tuition Meet students individually or in small groups to guide them in the acquisition of technical and social skills

Personalized attention
Description
Personalized attention will be in the office number 303 of the Department of Chemical Engineering via email appointment or during office hours.

Assessment
Methodologies Competences Description Weight        
Practical tests
RI10
B5
Discussion and resolution of activities, and/or open problems or cases, individually or group 30
Objective short-answer tests
RI10
B5
Individual short test during the semester to monitor the advancement of students 35
Objective short-answer tests
RI10
B5
Final test 35
Others  
 
Other comments and second exam session

It is needed to get at least 4 out of 10 in each of the evaluation terms.
For the second call, the final exam will comprise 70% of the grade. The remaining 30% will come from continuous assessment: 30% resolving an open problem (report) and hands-out.

During testing assessment, mobile phones,tablets and other electronic devices that are not expressly authorized for the test must be switched off and out of sight.


Sources of information

Basic Orozco C., Pérez A., González M.N., Rodríguez F.J., Alfayate J.M. , Contaminación ambiental : una visión desde la química, Thomson, 2003
Kiely G. , Ingeniería Ambiental: Fundamentos, entornos, tecnologías y sistemas de gestión, McGraw-Hill, 1999
Gómez Orea D., Evaluación de impacto ambiental, Ed. Mundi-prensa, 2a Ed, 2003

Documents of Càtedra Unesco de Sostenibilitat de la UPC: http://tecnologiaisostenibilitat.cus.upc.edu

Complementary De Nevers, N, Ingeniería de Control de la contaminación del aire, McGraw-Hill, 1998
Metcalf & Eddy, Wastewater Engineering Treatment and Reuse, 4th Edition, McGraw-Hill, 2003
Masters G.M., Introducción a la ingeniería medioambiental, 3a ed., Prentice Hall, 2008
Tchobanoglous G., Theisen H., Vigil S., Integrated solid waste management: engineering principles and management issues, McGraw-Hill, 1993
Sonnemann G., Castells F., Schuhmacher M., Integrated life-cycle and risk assessment for industrial processes, Lewis-Publisher, 2004
Rigola M., Prevenció en origen de la contaminació a l’empresa, Monografies universitàries, 5, Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, 2005
Riera P, Avaluació d’impacte ambiental , Departament de Medi Ambient, Generalitat de Catalunya , 2000
Conesa, V., Guía metodológica para la evaluación del impacto ambiental, Ed. Mundi-prensa, 4a Ed, 2010

- UNEP (2007), “Life cycle management – A business guide to sustainability” (http://www.unep.fr/shared/publications/pdf/DTIx0889xPA-LifeCycleManagement.pdf)

- Documents BREFs (http://eippcb.jrc.es/reference/)

Recommendations


Subjects that it is recommended to have taken before
CHEMICAL FUNDAMENTALS OF ENGINEERING/17214010
(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.